The Founder’s Guide
to Scaling Al

The Founder’s Guide
To Scaling Al

Why orchestration, system design, and infrastructure strategy
matter more than GPU price.

Most people building with Al today aren’t blocked by a lack of ideas or talent. They're
blocked by infrastructure. CIO reports estimate that 88% of Al proof-of-concepts never
make it to production. Stanford’s HAI report states that 90% of Al startups fail with the
most common reason being financial: they are too expensive to train, too slow to
iterate, and too difficult to scale. The models get better. The infra gets in the way.

Teams stop experimenting. Founders burn runway without results. Critical sectors
like healthcare, logistics, and finance delay adoption, not because the models
aren’t ready, but because the infrastructure isn’t. Infrastructure has become the
bottleneck of Al. It determines who moves forward and who stalls out.

This isn't a “nice to have” issue, it's an existential risk. As model sizes double and
performance demands surge, the infrastructure burden is accelerating faster than
budgets can keep pace. Most cloud platforms are optimized for predictable workloads,
such as web servers, databases, and scheduled tasks, not for GPU-intensive training or
multi-node inference at scale. The result: quota shortfalls, hagging provisioning delays,
hidden egress fees, and constrained workflows drive up costs and kill momentum.

The problem isn’t that teams are choosing the wrong model. The problem is that they're
stuck with infrastructure designed for static SaaS companies, not for distributed
training, real-time inference, or multi-agent systems.

Here's what that looks like in practice: A mid-sized Al team trying to fine-tune or
benchmark a 13B-parameter model under cost-sensitive time pressure faces delays of
hours or days while waiting for GPU availability. Every hour of idle provisioning racks up
costs, compounds scheduling complexity, and erodes experimental velocity. In many
cases, this hidden infrastructure friction consumes hundreds of thousands of dollars in
burn, sometimes more than half of the total project budget.

https://www.cio.com/article/3850763/88-of-ai-pilots-fail-to-reach-production-but-thats-not-all-on-it.html?utm_source=chatgpt.com
https://www.cio.com/article/3850763/88-of-ai-pilots-fail-to-reach-production-but-thats-not-all-on-it.html?utm_source=chatgpt.com
https://hai.stanford.edu/ai-index/2025-ai-index-report?utm_source=chatgpt.com

Why Infrastructure
Hasn't Kept Up

There are more infrastructure options than ever, but most still assume compute is a
fixed resource. The problem isn't GPU access. It's orchestration. A TechStrong survey
found that 85% of Al teams have experienced project delays due to GPU scarcity, and
39% of those delays lasted between three and six months.

Teams aren't only training models. They better iterate with fine-tuning, test
reinforcement loops, deploy inference APls, benchmark across architectures, all often in
parallel. That complexity requires real-time coordination. Most platforms, however, treat
servers like static endpoints. Engineers make manual decisions: selecting nodes,
routing jobs, rerunning tasks after failures. That’s not orchestration, it’s operational drag.

And every day, these delays stack up. A study published by Alibaba found even modest
GPU fragmentation (unused memory across nodes) can degrade efficiency by 10-20%.
That overhead translates directly into longer runtimes and higher costs per experiment.
Put it all together, capacity delays, downtime, fragmentation, and most teams are
paying far more than the headline GPU rate.

How Orchestration Works & Why
It Matters For Scaling Al

Most Al teams focus on model architecture, dataset quality, and evaluation metrics.
However, once models become larger, more complex, or move into production, the real
bottleneck is infrastructure coordination. This is where orchestration comes in.

Orchestration is the system-level process that matches jobs to compute. It determines
how resources are allocated, how quickly a training job starts, and how reliably
inference is served. In most environments, this coordination is either manual or rigid.
Engineers submit jobs to fixed nodes, monitor provisioning queues, and reroute when
something fails. As complexity increases, this process breaks down.

Modern Al development requires running many types of jobs in sequence or parallel. A
team might run fine-tuning jobs across different model sizes, serve multiple inference
endpoints with varying latency requirements, and spin up short-lived experiments to
test new hyperparameters. These jobs require different amounts of VRAM, various GPU
types, and varying levels of network throughput. Manually matching each one to
hardware slows everything down.

.MNeEemT™ - -

https://techstrong.ai/articles/survey-gpu-scarcity-delays-ai-initiatives/?utm_source=chatgpt.com
https://www.usenix.org/system/files/atc23-weng.pdf?utm_source=chatgpt.com
https://www.usenix.org/system/files/atc23-weng.pdf?utm_source=chatgpt.com

Effective orchestration solves this by abstracting the matching layer. It observes job
specs and system state, then automatically routes tasks to the proper hardware. It
reduces idle time, eliminates scheduling bottlenecks, and improves cluster efficiency. It
also enables faster iteration, since teams no longer wait for manual approvals, static
quotas, or backlogged provisioning.

Without orchestration, even the best infrastructure underperforms. With it, teams can
treat compute as a programmable resource. That shift unlocks faster development
cycles, smoother deployment, and better control over cost.

What A Well-Orchestrated
Compute System Looks Like

At a high level, orchestration is about decision-making. But underneath that, it is a set
of systems working together to evaluate job requirements, monitor available hardware,
and coordinate execution.

A modern orchestrator takes in real-time information about every job request, including
the amount of memory required, the types of GPUs that are compatible, whether the
job requires local storage or fast interconnects, and its tolerance to latency. It then
matches that job against a constantly changing pool of compute resources.

This requires more than a scheduler. It involves a real-time inventory of nodes,
performance history, bandwidth availability, and past failure rates. It also requires an
execution environment that can handle containerized jobs, support isolated runtimes,
and preserve reproducibility across hardware types.

A sound orchestration system does not just route tasks; it also coordinates them
effectively. It maintains visibility over everything running in the system. It captures logs,
performance data, and failure states.

It makes this information available to the user, rather than burying it inside abstract
dashboards or hiding it behind enterprise support plans.

For founders, the impact is direct. When orchestration is handled at the system level,
teams are not required to manage provisioning manually. They do not need to build
retry systems or cluster schedulers from scratch. And they do not need to sacrifice
flexibility in exchange for speed. The infrastructure adapts to the workload, not the
other way around.

What Founders Miss About
The Real Cost Of Scaling Al

It's easy to believe compute costs amount to GPU-hour pricing alone. But in practice,
several hidden factors significantly raise the actual total cost of ownership (TCO):

- Al workloads impose an “Al tax,” adding roughly 15% to TCO compared with

®
general-purpose servers because of extra stress on storage systems and interconnects.
S Inefficient GPU scheduling in large-scale environments leads to as much as 50% of
capacity going unused. Optimized orchestration systems can cut TCO by nearly 40%.
= Monolithic server setups waste around 30% of infrastructure costs. Disaggregated

systems have achieved roughly 49% TCO reductions over three years.

These inefficiencies go beyond sticker shock:
o |dle provisioning time still burns budget, even when no work is being done

- Fragmented memory and/or hardware mismatches reduce effective
throughput and productivity.

- Rigid server architectures force founders to over-provision compute
or abandon innovative experiments.
The right question isn’t “What is the GPU rate?” It's

® What is the cost per experiment?
® What percentage of capacity is wasted?

® How flexible is the system when workloads shift?

Why $/GPU-hour doesn't tell the full story

LLaMA 7B training QLoRA fine-tuning Inference

(1.4T tokens) (13B tokens) (100K/day)

AWS ~$350K ~$25K ~$5.5K/mo

Lambda ~$190K ~$13K ~$2.3K/mo

io.net ~$120K ~$6-8K ~$1.1K/mo
o |

Teams waste up to 50% of GPU capacity from idle time,
fragmentation, or misrouting (Tan et al., 2021).

https://arxiv.org/abs/2503.02550?utm_source=chatgpt.com
https://a16z.com/navigating-the-high-cost-of-ai-compute/?utm_source=chatgpt.com
https://a16z.com/navigating-the-high-cost-of-ai-compute/?utm_source=chatgpt.com
https://arxiv.org/abs/2503.02550?utm_source=chatgpt.com
https://arxiv.org/abs/2212.00939?utm_source=chatgpt.com

Where Orchestration Creates
Leverage For Scaling Al

As Al teams move from experimentation to production, most infrastructure systems
begin to show strain. Orchestration provides a means to manage this transition,
enabling founders to maintain high velocity while retaining control over costs and
complexity. Below are four areas worth investigating inside your organization:

Job throughput and scheduling bottlenecks

What to investigate: Are jobs regularly delayed due to unavailable compute, long
queue times, or manual approvals?

Why it matters: These slowdowns compound. Delays in training or evaluation reduce
the number of experiments you can run,
which directly limits how fast your models improve.

Founder tip: Track how many experiments your team completes each week, and how
many were delayed or rerun due to infrastructure issues.

Reactive vs. proactive resource allocation

What to investigate: What to investigate: Does your system automatically adjust
compute based on job type, urgency, or expected duration?

Why it matters: Static provisioning often leads to either overspending (idle capacity)
or under-provisioning (dropped performance). Dynamic allocation aligns resource use
with what matters.

Founder tip: Run a resource audit for the last 30 days. How often were large clusters
running low-priority or incomplete jobs?

Scaling under variable demand

What to investigate: What to investigate: Are jobs regularly delayed due to
unavailable compute, long queue times, or manual approvals?

Why it matters: Without orchestration, scaling tends to lag behind demand, resulting
in failed jobs, increased latency, or unnecessary cost overruns.

Founder tip: Simulate a burst load. Measure how long it takes your system to add
capacity and how efficiently it scales back down.

Visibility across teams and workloads

What to investigate: Can your team see where compute is being used, by whom, and
for what purpose?

Why it matters: Without clear visibility, teams often duplicate effort, over-request
resources, or run blind to inefficiencies.

Founder tip: Build a simple dashboard that groups jobs by team and workload. You
don’t need perfect tracking; just enough to identify where bottlenecks and
overspending occur.

When these patterns are understood and addressed, Al projects scale more predictably.
The goal isn’t just automation, it’s clarity. Founders who treat orchestration as part of
their scaling strategy unlock faster iteration, better resource efficiency, and stronger
alignment across teams

“When compute is programmable, you don’t just
reduce cost—you recover time.”

e U [-

What Scalable Infrastructure
Actually Looks Like For Al Teams

Founders often focus on scaling compute volume. More GPUs, faster clusters,

bigger training runs. But what matters just as much is how that infrastructure is
structured. The difference between a team that scales fast and one that stalls is often
architectural, not budgetary.

What to investigate: Is your infrastructure tightly coupled to your application logic?
Can you add or remove resources without rewriting pipelines or redeploying models?

Why it matters: Rigid systems make iteration slow and risky. When infrastructure
changes require product or model changes, flexible, modular systems let your team
evolve how it builds and ships without infrastructure getting in the way.

Founder tip: Map your current stack across training, inference, and experimentation.
Ask where changes are blocked by configuration, interconnects, or environment
constraints—not by the model itself.

)

What to investigate: Are you using the same setup for both
prototyping and production?

Why it matters: Early-stage experimentation environments tend to be overbuilt or
under-optimized for production use. As your team grows, the lack of separation
between the two leads to instability and wasted resources.

Founder tip: If your experimentation and production systems are identical, that’s a red
flag. Introduce at least one layer of abstraction that lets you scale production without
breaking workflows upstream.

What to investigate: Do you have observability across your stack?

Why it matters: Without visibility into job performance, resource allocation, and
utilization, you’re making blind bets. Teams often discover they’re overpaying for
underperforming infrastructure, months after the fact.

Founder tip: Set a baseline for cost per training hour and latency per inference
request. Use that baseline to flag when new jobs deviate by more than 20%.

Scalable infrastructure isn't just about how much compute you can access. It's about
whether your system enables you to adapt quickly, safely, and with sufficient context to
make informed decisions that keep your product and team moving forward.

Scaling Al Isn't About More Compute.
It's About Better Systems

For most founders, the challenge isn’'t access. It's alignment. The infrastructure you
start with often can’t support the pace, complexity, or scale of what your team grows
into. Jobs run slower. Experiments back up. Teams duplicate work or wait for each
other. And the more ambitious your models become, the more this friction compounds.

That's why scaling Al is as much about systems thinking as it is about hardware. The
way you coordinate jobs, route resources, track performance, and design workflows will
determine how far your team can go.

The good news is, most of these constraints are visible and fixable. When founders pay
attention to orchestration, cost per experiment, and architectural flexibility, they stop
treating infrastructure as a sunk cost. It becomes a strategic input. Something you can
shape. Something you can learn from.

That shift, from managing compute to building systems, is what separates teams that
scale confidently from those that stall out early.

.MNeEenT - —

What lo.Net Has Built And How It
Supports Scaling

Every Al company is solving a different problem. However, the infrastructure challenges
tend to remain the same: slow provisioning, unpredictable pricing, delayed feedback
loops, and increasing operational drag as models scale.

jo.net is focused on solving those problems by building an orchestration-first
infrastructure that developers can access directly. Through its global GPU network and
developer tools, io.net is helping Al teams eliminate capacity lock-in, reduce
experimentation delays, and scale without needing to build their infra from scratch.

Here's what that looks like today:

300,000+ GPUs and CPUs available globally with 5,000+ active GPUs, including A100s,
H100s, B200s, and 4090s

. Up to 70% lower cost than traditional providers, with no contract lock-in

500,000 free tokens per day for developers testing and running inference on 30+ open
models through io.net Intelligence

o Self-serve access through io.cloud, including options for both individuals and teams

Whether you’re running multi-model training, live inference endpoints, or agent workloads,

[]
the system is already built to support that scale
= Teams like Krea, Wondera, and Leonardo.Ai are already deploying on it and have moved
faster, with fewer constraints, by shifting orchestration out of their critical path
Teams building on io.net today
é]

® wondera KREA Al

Start building at o .l 1&="1"

http://io.net

	0
	s1Text
	s2Text
	s3Text
	s4Text
	s5Text
	s6Text
	s7Text
	s8Text
	s9Text

